Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Kidney360 ; 3(2): 293-306, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1776886

ABSTRACT

Background: The acute and long-term effects of severe acute respiratory syndrome coronavirus 2 infection in individuals with GN are still unclear. To address this relevant issue, we created the International Registry of COVID-19 infection in GN. Methods: We collected serial information on kidney-related and -unrelated outcomes from 125 GN patients (63 hospitalized and 62 outpatients) and 83 non-GN hospitalized patients with coronavirus disease 2019 (COVID-19) and a median follow-up period of 6.4 (interquartile range 2.3-9.6) months after diagnosis. We used logistic regression for the analyses of clinical outcomes and linear mixed models for the longitudinal analyses of eGFR. All multiple regression models were adjusted for age, sex, ethnicity, and renin-angiotensin-aldosterone system inhibitor use. Results: After adjustment for pre-COVID-19 eGFR and other confounders, mortality and AKI did not differ between GN patients and controls (adjusted odds ratio for AKI=1.28; 95% confidence interval [CI], 0.46 to 3.60; P=0.64). The main predictor of AKI was pre-COVID-19 eGFR (adjusted odds ratio per 1 SD unit decrease in eGFR=3.04; 95% CI, 1.76 to 5.28; P<0.001). GN patients developing AKI were less likely to recover pre-COVID-19 eGFR compared with controls (adjusted 6-month post-COVID-19 eGFR=0.41; 95% CI, 0.25 to 0.56; times pre-COVID-19 eGFR). Shorter duration of GN diagnosis, higher pre-COVID-19 proteinuria, and diagnosis of focal segmental glomerulosclerosis or minimal change disease were associated with a lower post-COVID-19 eGFR. Conclusions: Pre-COVID-19 eGFR is the main risk factor for AKI regardless of GN diagnosis. However, GN patients are at higher risk of impaired eGFR recovery after COVID-19-associated AKI. These patients (especially those with high baseline proteinuria or a diagnosis of focal segmental glomerulosclerosis or minimal change disease) should be closely monitored not only during the acute phases of COVID-19 but also after its resolution.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/complications , COVID-19/epidemiology , Follow-Up Studies , Humans , Registries , SARS-CoV-2
2.
J Clin Med ; 10(7)2021 Apr 02.
Article in English | MEDLINE | ID: covidwho-1186975

ABSTRACT

Acute kidney injury (AKI) is a common finding in kidney donors and recipients. AKI in kidney donor, which increases the risk of delayed graft function (DGF), may not by itself jeopardize the short- and long-term outcome of transplantation. However, some forms of AKI may induce graft rejection, fibrosis, and eventually graft dysfunction. Therefore, various strategies have been proposed to identify conditions at highest risk of AKI-induced DGF, that can be treated by targeting the donor, the recipient, or even the graft itself with the use of perfusion machines. AKI that occurs early post-transplant after a period of initial recovery of graft function may reflect serious and often occult systemic complications that may require prompt intervention to prevent graft loss. AKI that develops long after transplantation is often related to nephrotoxic drug reactions. In symptomatic patients, AKI is usually associated with various systemic medical complications and could represent a risk of mortality. Electronic systems have been developed to alert transplant physicians that AKI has occurred in a transplant recipient during long-term outpatient follow-up. Herein, we will review most recent understandings of pathophysiology, diagnosis, therapeutic approach, and short- and long-term consequences of AKI occurring in both the donor and in the kidney transplant recipient.

3.
PLoS One ; 16(3): e0248276, 2021.
Article in English | MEDLINE | ID: covidwho-1148243

ABSTRACT

OBJECTIVES: Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed. We hypothesized that colchicine, by counteracting proinflammatory pathways implicated in the uncontrolled inflammatory response of COVID-19 patients, reduces pulmonary complications, and improves survival. METHODS: This retrospective study included 71 consecutive COVID-19 patients (hospitalized with pneumonia on CT scan or outpatients) who received colchicine and compared with 70 control patients who did not receive colchicine in two serial time periods at the same institution. We used inverse probability of treatment propensity-score weighting to examine differences in mortality, clinical improvement (using a 7-point ordinary scale), and inflammatory markers between the two groups. RESULTS: Amongst the 141 COVID-19 patients (118 [83.7%] hospitalized), 70 (50%) received colchicine. The 21-day crude cumulative mortality was 7.5% in the colchicine group and 28.5% in the control group (P = 0.006; adjusted hazard ratio: 0.24 [95%CI: 0.09 to 0.67]); 21-day clinical improvement occurred in 40.0% of the patients on colchicine and in 26.6% of control patients (adjusted relative improvement rate: 1.80 [95%CI: 1.00 to 3.22]). The strong association between the use of colchicine and reduced mortality was further supported by the diverging linear trends of percent daily change in lymphocyte count (P = 0.018), neutrophil-to-lymphocyte ratio (P = 0.003), and in C-reactive protein levels (P = 0.009). Colchicine was stopped because of transient side effects (diarrhea or skin rashes) in 7% of patients. CONCLUSION: In this retrospective cohort study colchicine was associated with reduced mortality and accelerated recovery in COVID-19 patients. This support the rationale for current larger randomized controlled trials testing the safety/efficacy profile of colchicine in COVID-19 patients.


Subject(s)
COVID-19 Drug Treatment , COVID-19/mortality , Colchicine/therapeutic use , Aged , Aged, 80 and over , Colchicine/metabolism , Female , Hospitalization , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/pathogenicity , Treatment Outcome
5.
Kidney Int ; 99(1): 227-237, 2021 01.
Article in English | MEDLINE | ID: covidwho-922088

ABSTRACT

The effects of SARS-CoV-2 infection on individuals with immune-mediated glomerulonephritis, who are often undergoing immunosuppressive treatments, are unknown. Therefore, we created the International Registry of COVID infection in glomerulonephritis (IRoc-GN) and identified 40 patients with glomerulonephritis and COVID-19 followed in centers in North America and Europe. Detailed information on glomerulonephritis diagnosis, kidney parameters, and baseline immunosuppression prior to infection were recorded, as well as clinical presentation, laboratory values, treatment, complications, and outcomes of COVID-19. This cohort was compared to 80 COVID-positive control cases from the general population without glomerulonephritis matched for the time of infection. The majority (70%) of the patients with glomerulonephritis and all the controls were hospitalized. Patients with glomerulonephritis had significantly higher mortality (15% vs. 5%, respectively) and acute kidney injury (39% vs. 14%) than controls, while the need for kidney replacement therapy was not statistically different between the two groups. Receiving immunosuppression or renin-angiotensin-aldosterone system inhibitors at presentation did not increase the risk of death or acute kidney injury in the glomerulonephritis cohort. In the cohort with glomerulonephritis, lower serum albumin at presentation and shorter duration of glomerular disease were associated with greater risk of acute kidney injury and need for kidney replacement therapy. No differences in outcomes occurred between patients with primary glomerulonephritis versus glomerulonephritis associated with a systemic autoimmune disease (lupus or vasculitis). Thus, due to the higher mortality and risk of acute kidney injury than in the general population without glomerulonephritis, patients with glomerulonephritis and COVID-19 should be carefully monitored, especially when they present with low serum albumin levels.


Subject(s)
Acute Kidney Injury/epidemiology , Angiotensin-Converting Enzyme Inhibitors/adverse effects , COVID-19/immunology , Glomerulonephritis/immunology , Immunosuppressive Agents/adverse effects , Acute Kidney Injury/etiology , Adult , Aged , Aged, 80 and over , COVID-19/complications , COVID-19/mortality , COVID-19/virology , Europe/epidemiology , Female , Glomerulonephritis/complications , Glomerulonephritis/drug therapy , Glomerulonephritis/mortality , Humans , International Cooperation , Male , Middle Aged , North America/epidemiology , Registries/statistics & numerical data , Retrospective Studies , SARS-CoV-2/immunology
6.
Ultrasound Med Biol ; 46(11): 2908-2917, 2020 11.
Article in English | MEDLINE | ID: covidwho-664624

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) is characterized by severe pneumonia and/or acute respiratory distress syndrome in about 20% of infected patients. Computed tomography (CT) is the routine imaging technique for diagnosis and monitoring of COVID-19 pneumonia. Chest CT has high sensitivity for diagnosis of COVID-19, but is not universally available, requires an infected or unstable patient to be moved to the radiology unit with potential exposure of several people, necessitates proper sanification of the CT room after use and is underutilized in children and pregnant women because of concerns over radiation exposure. The increasing frequency of confirmed COVID-19 cases is striking, and new sensitive diagnostic tools are needed to guide clinical practice. Lung ultrasound (LUS) is an emerging non-invasive bedside technique that is used to diagnose interstitial lung syndrome through evaluation and quantitation of the number of B-lines, pleural irregularities and nodules or consolidations. In patients with COVID-19 pneumonia, LUS reveals a typical pattern of diffuse interstitial lung syndrome, characterized by multiple or confluent bilateral B-lines with spared areas, thickening of the pleural line with pleural line irregularity and peripheral consolidations. LUS has been found to be a promising tool for the diagnosis of COVID-19 pneumonia, and LUS findings correlate fairly with those of chest CT scan. Compared with CT, LUS has several other advantages, such as lack of exposure to radiation, bedside repeatability during follow-up, low cost and easier application in low-resource settings. Consequently, LUS may decrease utilization of conventional diagnostic imaging resources (CT scan and chest X-ray). LUS may help in early diagnosis, therapeutic decisions and follow-up monitoring of COVID-19 pneumonia, particularly in the critical care setting and in pregnant women, children and patients in areas with high rates of community transmission.


Subject(s)
Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Respiratory Distress Syndrome/diagnostic imaging , Ultrasonography/methods , Betacoronavirus , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Humans , Pandemics , Pneumonia, Viral/virology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Sensitivity and Specificity , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL